Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack.

Identifieur interne : 000087 ( Main/Exploration ); précédent : 000086; suivant : 000088

Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack.

Auteurs : Varun Kumar [Israël] ; Erel Hatan [Israël] ; Einat Bar [Israël] ; Rachel Davidovich-Rikanati [Israël] ; Adi Doron-Faigenboim [Israël] ; Ben Spitzer-Rimon [Israël] ; Yigal Elad [Israël] ; Noam Alkan [Israël] ; Efraim Lewinsohn [Israël] ; Michal Oren-Shamir [Israël]

Source :

RBID : pubmed:32645754

Abstract

Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca2+ signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca2+ and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.

DOI: 10.1111/tpj.14919
PubMed: 32645754


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack.</title>
<author>
<name sortKey="Kumar, Varun" sort="Kumar, Varun" uniqKey="Kumar V" first="Varun" last="Kumar">Varun Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hatan, Erel" sort="Hatan, Erel" uniqKey="Hatan E" first="Erel" last="Hatan">Erel Hatan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bar, Einat" sort="Bar, Einat" uniqKey="Bar E" first="Einat" last="Bar">Einat Bar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095</wicri:regionArea>
<wicri:noRegion>30095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Davidovich Rikanati, Rachel" sort="Davidovich Rikanati, Rachel" uniqKey="Davidovich Rikanati R" first="Rachel" last="Davidovich-Rikanati">Rachel Davidovich-Rikanati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095</wicri:regionArea>
<wicri:noRegion>30095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Doron Faigenboim, Adi" sort="Doron Faigenboim, Adi" uniqKey="Doron Faigenboim A" first="Adi" last="Doron-Faigenboim">Adi Doron-Faigenboim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spitzer Rimon, Ben" sort="Spitzer Rimon, Ben" uniqKey="Spitzer Rimon B" first="Ben" last="Spitzer-Rimon">Ben Spitzer-Rimon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elad, Yigal" sort="Elad, Yigal" uniqKey="Elad Y" first="Yigal" last="Elad">Yigal Elad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alkan, Noam" sort="Alkan, Noam" uniqKey="Alkan N" first="Noam" last="Alkan">Noam Alkan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lewinsohn, Efraim" sort="Lewinsohn, Efraim" uniqKey="Lewinsohn E" first="Efraim" last="Lewinsohn">Efraim Lewinsohn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095</wicri:regionArea>
<wicri:noRegion>30095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oren Shamir, Michal" sort="Oren Shamir, Michal" uniqKey="Oren Shamir M" first="Michal" last="Oren-Shamir">Michal Oren-Shamir</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32645754</idno>
<idno type="pmid">32645754</idno>
<idno type="doi">10.1111/tpj.14919</idno>
<idno type="wicri:Area/Main/Corpus">000093</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000093</idno>
<idno type="wicri:Area/Main/Curation">000093</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000093</idno>
<idno type="wicri:Area/Main/Exploration">000093</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack.</title>
<author>
<name sortKey="Kumar, Varun" sort="Kumar, Varun" uniqKey="Kumar V" first="Varun" last="Kumar">Varun Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hatan, Erel" sort="Hatan, Erel" uniqKey="Hatan E" first="Erel" last="Hatan">Erel Hatan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bar, Einat" sort="Bar, Einat" uniqKey="Bar E" first="Einat" last="Bar">Einat Bar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095</wicri:regionArea>
<wicri:noRegion>30095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Davidovich Rikanati, Rachel" sort="Davidovich Rikanati, Rachel" uniqKey="Davidovich Rikanati R" first="Rachel" last="Davidovich-Rikanati">Rachel Davidovich-Rikanati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095</wicri:regionArea>
<wicri:noRegion>30095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Doron Faigenboim, Adi" sort="Doron Faigenboim, Adi" uniqKey="Doron Faigenboim A" first="Adi" last="Doron-Faigenboim">Adi Doron-Faigenboim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spitzer Rimon, Ben" sort="Spitzer Rimon, Ben" uniqKey="Spitzer Rimon B" first="Ben" last="Spitzer-Rimon">Ben Spitzer-Rimon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elad, Yigal" sort="Elad, Yigal" uniqKey="Elad Y" first="Yigal" last="Elad">Yigal Elad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alkan, Noam" sort="Alkan, Noam" uniqKey="Alkan N" first="Noam" last="Alkan">Noam Alkan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lewinsohn, Efraim" sort="Lewinsohn, Efraim" uniqKey="Lewinsohn E" first="Efraim" last="Lewinsohn">Efraim Lewinsohn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095</wicri:regionArea>
<wicri:noRegion>30095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oren Shamir, Michal" sort="Oren Shamir, Michal" uniqKey="Oren Shamir M" first="Michal" last="Oren-Shamir">Michal Oren-Shamir</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159</wicri:regionArea>
<wicri:noRegion>P.O.B 15159</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca
<sup>2+</sup>
signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca
<sup>2+</sup>
and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32645754</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14919</ELocationID>
<Abstract>
<AbstractText>Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca
<sup>2+</sup>
signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca
<sup>2+</sup>
and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.</AbstractText>
<CopyrightInformation>© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Varun</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hatan</LastName>
<ForeName>Erel</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bar</LastName>
<ForeName>Einat</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davidovich-Rikanati</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doron-Faigenboim</LastName>
<ForeName>Adi</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spitzer-Rimon</LastName>
<ForeName>Ben</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elad</LastName>
<ForeName>Yigal</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alkan</LastName>
<ForeName>Noam</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lewinsohn</LastName>
<ForeName>Efraim</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oren-Shamir</LastName>
<ForeName>Michal</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7646-9492</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>256-1054-88</GrantID>
<Agency>COPIA Agro & Food Technologies</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Botrytis cinerea</Keyword>
<Keyword MajorTopicYN="N">chrysanthemum</Keyword>
<Keyword MajorTopicYN="N">differential gene expression analysis</Keyword>
<Keyword MajorTopicYN="N">immune signaling</Keyword>
<Keyword MajorTopicYN="N">induced resistance</Keyword>
<Keyword MajorTopicYN="N">phenylalanine</Keyword>
<Keyword MajorTopicYN="N">volatiles</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32645754</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14919</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410.</Citation>
</Reference>
<Reference>
<Citation>Asselbergh, B., Curvers, K., Franca, S.C., Audenaert, K., Vuylsteke, M., Van Breusegem, F. and Hofte, M. (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144, 1863-1877.</Citation>
</Reference>
<Reference>
<Citation>Beneloujaephajri, E., Costa, A., L'Haridon, F., Metraux, J.P. and Binda, M. (2013) Production of reactive oxygen species and wound-induced resistance in Arabidopsis thaliana against Botrytis cinerea are preceded and depend on a burst of calcium. BMC Plant Biol. 13, 160.</Citation>
</Reference>
<Reference>
<Citation>Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289-300.</Citation>
</Reference>
<Reference>
<Citation>Buchfink, B., Xie, C. and Huson, D.H. (2015) Fast and sensitive protein alignment using DIAMOND. Nat. Methods, 12, 59-60.</Citation>
</Reference>
<Reference>
<Citation>Burketova, L., Trda, L., Ott, P.G. and Valentova, O. (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 33, 994-1004.</Citation>
</Reference>
<Reference>
<Citation>Cao, X., Yan, H., Liu, X., Li, D., Sui, M., Wu, J., Yu, H. and Zhang, Z. (2019) A detached petal disc assay and virus-induced gene silencing facilitate the study of Botrytis cinerea resistance in rose flowers. Hortic. Res. 6, 136.</Citation>
</Reference>
<Reference>
<Citation>Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M. and Robles, M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674-3676.</Citation>
</Reference>
<Reference>
<Citation>Conrath, U., Beckers, G.J.M., Langenbach, C.J.G. and Jaskiewicz, M.R. (2015) Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97-119.</Citation>
</Reference>
<Reference>
<Citation>Davidovich-Rikanati, R., Lewinsohn, E., Bar, E., Iijima, Y., Pichersky, E. and Sitrit, Y. (2008) Overexpression of the lemon basil α-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Plant J. 56, 228-238.</Citation>
</Reference>
<Reference>
<Citation>De Cremer, K., Mathys, J., Vos, C., Froenicke, L., Michelmore, R.W., Cammue, B.P. and De Coninck, B. (2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant Cell Environ. 36, 1992-2007.</Citation>
</Reference>
<Reference>
<Citation>Denness, L., McKenna, J.F., Segonzac, C., Wormit, A., Madhou, P., Bennett, M., Mansfield, J., Zipfel, C. and Hamann, T. (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 156, 1364-1374.</Citation>
</Reference>
<Reference>
<Citation>Dixon, R.A. and Paiva, N.L. (1995) Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085-1097.</Citation>
</Reference>
<Reference>
<Citation>Elad, Y., Pertot, I., Prado, A.M.C. and Stewart, A. (2016) Plant hosts of Botrytis spp. In Botrytis - the Fungus, the Pathogen and its Management in Agricultural Systems (Fillinger, S. and Elad, Y. eds). Switzerland: Springer International Publishing, pp. 413-486.</Citation>
</Reference>
<Reference>
<Citation>Elad, Y. (1988a) Involvement of ethylene in the disease caused by Botrytis cinerea on rose and carnation flowers and the possibility of control. Ann. Appl. Biol. 113, 589-598.</Citation>
</Reference>
<Reference>
<Citation>Elad, Y. (1988b) Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Prot. 7, 361-366.</Citation>
</Reference>
<Reference>
<Citation>Engelsdorf, T., Gigli-Bisceglia, N., Veerabagu, M., McKenna, J.F., Vaahtera, L., Augstein, F., Van der Does, D., Zipfel, C. and Hamann, T. (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci. Signal. 11, eaao3070.</Citation>
</Reference>
<Reference>
<Citation>Erb, M. (2018) Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling. Curr. Opin. Plant Biol. 44, 117-121.</Citation>
</Reference>
<Reference>
<Citation>Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F.M. and Dewdney, J. (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signalling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144, 367-379.</Citation>
</Reference>
<Reference>
<Citation>Ferrari, S., Plotnikova, J.M., De Lorenzo, G. and Ausubel, F.M. (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J. 35, 193-205.</Citation>
</Reference>
<Reference>
<Citation>Fillinger, S. and Elad, Y. (2015) Botrytis-the Fungus, the Pathogen and its Management in Agricultural Systems. Switzerland: Springer International Publishing.</Citation>
</Reference>
<Reference>
<Citation>Fillinger, S. and Walker, A.S. (2016) Chemical control and resistance management of Botrytis diseases. In Botrytis - the Fungus, the Pathogen and its Management in Agricultural Systems (Fillinger, S. and Elad, Y. ed). Switzerland: Springer International Publishing, pp. 189-216.</Citation>
</Reference>
<Reference>
<Citation>Gonda, I., Davidovich-Rikanati, R., Bar, E. et al. (2018) Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) fruit. Phytochemistry, 148, 122-131.</Citation>
</Reference>
<Reference>
<Citation>Guo, Q., Major, I.T. and Howe, G.A. (2018) Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. Curr. Opin. Plant Biol. 44, 72-81.</Citation>
</Reference>
<Reference>
<Citation>Haile, Z.M., Pilati, S., Sonego, P., Malacarne, G., Vrhovsek, U., Engelen, K., Tudzynski, P., Zottini, M., Baraldi, E. and Moser, C. (2017) Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence. Plant Cell Environ. 40, 1409-1428.</Citation>
</Reference>
<Reference>
<Citation>Hammerbacher, A., Coutinho, T.A. and Gershenzon, J. (2019) Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant Cell Environ. 42, 2827-2843.</Citation>
</Reference>
<Reference>
<Citation>Han, A.R., Nam, B., Kim, B.R., Lee, K.C., Song, B.S., Kim, S.H., Kim, J.B. and Jin, C.H. (2019) Phytochemical composition and antioxidant activities of two different color Chrysanthemum flower teas. Molecules, 24, 329.</Citation>
</Reference>
<Reference>
<Citation>Huot, B., Yao, J., Montgomery, B.L. and He, S.Y. (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant, 7, 1267-1287.</Citation>
</Reference>
<Reference>
<Citation>Jeworutzki, E., Roelfsema, M.R., Anschutz, U., Krol, E., Elzenga, J.T.M., Felix, G., Boller, T., Hedrich, R. and Becker, D. (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. Plant J. 62, 367-378.</Citation>
</Reference>
<Reference>
<Citation>Kim, Y.S., Lim, S., Yoda, H., Choi, C.S., Choi, Y.E. and Sano, H. (2011) Simultaneous activation of salicylate production and fungal resistance in transgenic chrysanthemum producing caffeine. Plant Signal. Behav. 6, 409-412.</Citation>
</Reference>
<Reference>
<Citation>Kumar, V. (2019) OMICS-based approaches for elucidation of picrosides biosynthesis in Picrorhiza kurroa. In OMICS-Based Approaches in Plant Biotechnology (Banerjee, R., Kumar, G.V. and Kumar, S.P.J., eds). USA: Scrivener Publishing LLC, pp. 145-166.</Citation>
</Reference>
<Reference>
<Citation>La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M. and Heitz, T. (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol. Rev. 198, 267-284.</Citation>
</Reference>
<Reference>
<Citation>Li, B., Meng, X., Shan, L. and He, P. (2016) Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe, 19, 641-650.</Citation>
</Reference>
<Reference>
<Citation>Lin, L.Z. and Harnly, J.M. (2010) Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem. 120, 319-326.</Citation>
</Reference>
<Reference>
<Citation>Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.</Citation>
</Reference>
<Reference>
<Citation>Manela, N., Oliva, M., Ovadia, R., Sikron-Persi, N., Ayenew, B., Fait, A., Galili, G., Perl, A., Weiss, D. and Oren-Shamir, M. (2015) Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Front. Plant Sci. 6, 538.</Citation>
</Reference>
<Reference>
<Citation>Marcec, M.J., Gilroy, S., Poovaiah, B.W. and Tanaka, K. (2019) Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 283, 343-354.</Citation>
</Reference>
<Reference>
<Citation>Mauch-Mani, B., Baccelli, I., Luna, E. and Flors, V. (2017) Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485-512.</Citation>
</Reference>
<Reference>
<Citation>Metsalu, T. and Vilo, J. (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566-W570.</Citation>
</Reference>
<Reference>
<Citation>Müller, M. and Munné-Bosch, S. (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol. 169, 32-41.</Citation>
</Reference>
<Reference>
<Citation>Naoumkina, M.A., Zhao, Q., Gallego-Giraldo, L., Dai, X., Zhao, P.X. and Dixon, R.A. (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol. Plant Pathol. 11, 829-846.</Citation>
</Reference>
<Reference>
<Citation>Noctor, G., Reichheld, J.P. and Foyer, C.H. (2018) ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80, 3-12.</Citation>
</Reference>
<Reference>
<Citation>Oliva, M., Hatan, E., Kumar, V. et al. (2020) Increased phenylalanine levels in plant leaves reduces susceptibility to Botrytis cinerea. Plant Sci. 290, 110289.</Citation>
</Reference>
<Reference>
<Citation>Oliva, M., Ovadia, R., Perl, A., Bar, E., Lewinsohn, E., Galili, G. and Oren-Shamir, M. (2015) Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida. Plant Biotechnol. J. 13, 125-136.</Citation>
</Reference>
<Reference>
<Citation>Panstruga, R., Parker, J.E. and Schulze-Lefert, P. (2009) SnapShot: plant immune response pathways. Cell, 136, 978.e1-3.</Citation>
</Reference>
<Reference>
<Citation>Para, A., Muhammad, D., Orozco-Nunnelly, D.A., Memishi, R., Alvarez, S., Naldrett, M.J. and Warpeha, K.M. (2016) The dehydratase ADT3 affects ROS homeostasis and cotyledon development. Plant Physiol. 172, 1045-1060.</Citation>
</Reference>
<Reference>
<Citation>Pastor, V., Luna, E., Ton, J., Cerezo, M., Garcia-Agustin, P. and Flors, V. (2013) Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis. Mol. Plant-Microbe Interact. 26, 1334-1344.</Citation>
</Reference>
<Reference>
<Citation>Perez, K., Mercado, J. and Soto-Valdez, H. (2004) Note. Effect of storage temperature on the shelf life of hass avocado (Persea Americana). Food Sci. Technol. Int. 10, 73-77.</Citation>
</Reference>
<Reference>
<Citation>Perkowski, M.C. and Warpeha, K.M. (2019) Phenylalanine roles in the seed-to-seedling stage: not just an amino acid. Plant Sci. 289, 110223.</Citation>
</Reference>
<Reference>
<Citation>Piesik, D., Miler, N., Lemanczyk, G., Bocianowski, J. and Buszewski, B. (2015) Botrytis cinerea infection in three cultivars of chrysanthemum in ‘Alchimist’ and its mutants: Volatile induction of pathogen-infected plants. Sci. Hortic. 193, 127-135.</Citation>
</Reference>
<Reference>
<Citation>Qu, S., Zhang, X., Song, Y., Lin, J. and Shan, X. (2017) THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. J. Integr. Plant Biol. 59, 797-804.</Citation>
</Reference>
<Reference>
<Citation>Quintana-Rodriguez, E., Rivera-Macias, L.E., Adame-Alvarez, R.M., Torres, J.M. and Heil, M. (2018) Shared weapons in fungus-fungus and fungus-plant interactions? Volatile organic compounds of plant or fungal origin exert direct antifungal activity in vitro. Fungal Ecol. 33, 115-121.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez, P.A., Rothballer, M., Chowdhury, S.P., Nussbaumer, T., Gutjahr, C. and Falter-Braun, P. (2019) Systems biology of plant-microbiome interactions. Mol. Plant, 12, 804-821.</Citation>
</Reference>
<Reference>
<Citation>Romanazzi, G., Sanzani, S.M., Bi, Y., Tian, S.P., Martinez, P.G. and Alkan, N. (2016) Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 122, 82-94.</Citation>
</Reference>
<Reference>
<Citation>Takatsu, Y., Nishizawa, Y., Hibi, T. and Akutsu, K. (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Hortic. 82, 113-123.</Citation>
</Reference>
<Reference>
<Citation>Tattini, M., Loreto, F., Fini, A., Guidi, L., Brunetti, C., Velikova, V., Gori, A. and Ferrini, F. (2015) Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. New Phytol. 207, 613-626.</Citation>
</Reference>
<Reference>
<Citation>Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Müller, L.A., Rhee, S.Y. and Stitt, M. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914-939.</Citation>
</Reference>
<Reference>
<Citation>Ton, J. and Mauch-Mani, B. (2004) β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38, 119-130.</Citation>
</Reference>
<Reference>
<Citation>Tripathi, S.K. and Tuteja, N. (2007) Integrated signaling in flower senescence. Plant Signal. Behav. 2, 437-445.</Citation>
</Reference>
<Reference>
<Citation>Tzin, V., Malitsky, S., Ben Zvi, M.M., Bedair, M., Sumner, L., Aharoni, A. and Galili, G. (2012) Expression of a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol. 194, 430-439.</Citation>
</Reference>
<Reference>
<Citation>Vanholme, B., Houari, I.E. and Boerjan, W. (2019) Bioactivity: phenylpropanoids' best kept secret. Curr. Opin. Biotechnol. 56, 156-162.</Citation>
</Reference>
<Reference>
<Citation>Wang, C., Zhang, J., Chen, H., Fan, Y. and Shi, Z. (2010) Antifungal activity of eugenol against Botrytis cinerea. Trop. Plant Pathol. 35, 137-143.</Citation>
</Reference>
<Reference>
<Citation>Wilson, C.L., Franklin, J.D. and Otto, B.E. (1987) Fruit volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Dis. 71, 316-319.</Citation>
</Reference>
<Reference>
<Citation>Yoo, J.A., Lim, Y.M. and Yoon, M.H. (2016) Production and antifungal effect of 3-phenyllactic acid (PLA) by lactic acid bacteria. J. Appl. Biol. Chem. 59, 173-178.</Citation>
</Reference>
<Reference>
<Citation>Ziv, C., Zhao, Z., Gao, Y.G. and Xia, Y. (2018) Multifunctional roles of plant cuticle during plant-pathogen interactions. Front. Plant Sci. 9, 1088.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Kumar, Varun" sort="Kumar, Varun" uniqKey="Kumar V" first="Varun" last="Kumar">Varun Kumar</name>
</noRegion>
<name sortKey="Alkan, Noam" sort="Alkan, Noam" uniqKey="Alkan N" first="Noam" last="Alkan">Noam Alkan</name>
<name sortKey="Bar, Einat" sort="Bar, Einat" uniqKey="Bar E" first="Einat" last="Bar">Einat Bar</name>
<name sortKey="Davidovich Rikanati, Rachel" sort="Davidovich Rikanati, Rachel" uniqKey="Davidovich Rikanati R" first="Rachel" last="Davidovich-Rikanati">Rachel Davidovich-Rikanati</name>
<name sortKey="Doron Faigenboim, Adi" sort="Doron Faigenboim, Adi" uniqKey="Doron Faigenboim A" first="Adi" last="Doron-Faigenboim">Adi Doron-Faigenboim</name>
<name sortKey="Elad, Yigal" sort="Elad, Yigal" uniqKey="Elad Y" first="Yigal" last="Elad">Yigal Elad</name>
<name sortKey="Hatan, Erel" sort="Hatan, Erel" uniqKey="Hatan E" first="Erel" last="Hatan">Erel Hatan</name>
<name sortKey="Lewinsohn, Efraim" sort="Lewinsohn, Efraim" uniqKey="Lewinsohn E" first="Efraim" last="Lewinsohn">Efraim Lewinsohn</name>
<name sortKey="Oren Shamir, Michal" sort="Oren Shamir, Michal" uniqKey="Oren Shamir M" first="Michal" last="Oren-Shamir">Michal Oren-Shamir</name>
<name sortKey="Spitzer Rimon, Ben" sort="Spitzer Rimon, Ben" uniqKey="Spitzer Rimon B" first="Ben" last="Spitzer-Rimon">Ben Spitzer-Rimon</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000087 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000087 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32645754
   |texte=   Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32645754" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020